Slijede razlike između dviju inačica stranice.
Starije izmjene na obje strane Starija izmjena Novija izmjena | Starija izmjena | ||
racfor_wiki:primjena_strojnog_ucenja_u_racunalnoj_sigurnosti [2021/01/17 20:50] arados [Literatura] |
racfor_wiki:primjena_strojnog_ucenja_u_racunalnoj_sigurnosti [2024/12/05 12:24] (trenutno) |
||
---|---|---|---|
Redak 32: | Redak 32: | ||
==== Detekcija mrežne krađe identiteta (eng. Phishing) ==== | ==== Detekcija mrežne krađe identiteta (eng. Phishing) ==== | ||
- | Mrežna krađa identiteta (eng. phishing) je krađa | + | Mrežna krađa identiteta (eng. phishing) je krađa |
- Detekcija | - Detekcija | ||
- Nadgledanje životnog ciklusa računa | - Nadgledanje životnog ciklusa računa | ||
Redak 82: | Redak 82: | ||
Sustavi detekcije upada u mrežu mogu se postaviti i u vanjski dio mreže prije vatrozida umjesto nakon njega kao na slici. Oba pristupa imaju svoje dobre i loše karakteristike, | Sustavi detekcije upada u mrežu mogu se postaviti i u vanjski dio mreže prije vatrozida umjesto nakon njega kao na slici. Oba pristupa imaju svoje dobre i loše karakteristike, | ||
- | Genetičko mrežno programiranje (eng. Genetic Network Programming - GNP) je ujedinjeno učinkovito rješenje za detekciju zlouporabe i anomalija. Predložili su ga Lu, Mabu, Wang i Hirasawa 2013. godine. Spojeni su algoritam genetike i stupnja podudaranja tako da redundantna pravila mogu biti izbačena a ona korisna filtrirana. Sustav je testiran na KDDcup99 bazi podataka. Predloženi algoritam izbacivanja redundantnih pravila (eng. pruning algorithm) ne taži ulaz prethodno stečenog znanja nego se pravilo izbacuje ukoliko ne zadovoljava određeni prag stupnja podudaranja. | + | Genetičko mrežno programiranje (eng. Genetic Network Programming - GNP) je ujedinjeno učinkovito rješenje za detekciju zlouporabe i anomalija. Predložili su ga Lu, Mabu, Wang i Hirasawa 2013. godine. Spojeni su algoritam genetike i stupnja podudaranja tako da redundantna pravila mogu biti izbačena a ona korisna filtrirana. Sustav je testiran na KDDcup99 bazi podataka. Predloženi algoritam izbacivanja redundantnih pravila (eng. pruning algorithm) ne traži ulaz prethodno stečenog znanja nego se pravilo izbacuje ukoliko ne zadovoljava određeni prag stupnja podudaranja. |
Sustav je treniran nad 8068 slučajno izabranih konekcija, od kojih je 4116 bilo normalnih, a 3952 primjeri štrumf (eng. smurf) i neptun (eng. neptune) napada. Nakon treniranja dobiveno rješenje je testirano na 4068 normalnih i 4000 zlonamjernih konekcija. Točnost je 94.91%, stopa lažno negativnih je bila 2.05%. Tablica 2 prikazuje usporedbu različitih algoritama i predloženog algoritma. | Sustav je treniran nad 8068 slučajno izabranih konekcija, od kojih je 4116 bilo normalnih, a 3952 primjeri štrumf (eng. smurf) i neptun (eng. neptune) napada. Nakon treniranja dobiveno rješenje je testirano na 4068 normalnih i 4000 zlonamjernih konekcija. Točnost je 94.91%, stopa lažno negativnih je bila 2.05%. Tablica 2 prikazuje usporedbu različitih algoritama i predloženog algoritma. | ||
Redak 148: | Redak 148: | ||
===== Zaključak ===== | ===== Zaključak ===== | ||
- | Algoritmi strojnog učenja su učinkovit alat koji se može primijeniti i na računalnu sigurnost. Njihova prilagodljivost problemu, skalabilnost i mogućnost brze prilagodbe novim i nepoznatim problemima čini ih vrlo popularnim rješenjem. Postoje algoritmi strojnog učenja za detekciju pokušaja mrežne krađe identiteta - phishing-a i detekciju pokušaja upada u mrežu. Strojno učenje se uspješno može primijeniti i za razvoj sustava autentifikacije i provjeru sigurnosti sustava koji osiguravaju dokaz ljudske interakcije. Iako su ti sustavi strojnog učenja razvijeni da bi zaštitile razne baze podataka i web stranice oni su sami ranjivi određenim vrstama zlonamjernih napada. | + | Algoritmi strojnog učenja su učinkovit alat koji se može primijeniti i na računalnu sigurnost. Njihova prilagodljivost problemu, skalabilnost i mogućnost brze prilagodbe novim i nepoznatim problemima čini ih vrlo popularnim rješenjem. Postoje algoritmi strojnog učenja za detekciju pokušaja mrežne krađe identiteta - phishing-a i detekciju pokušaja upada u mrežu. Strojno učenje se uspješno može primijeniti i za razvoj sustava autentifikacije i provjeru sigurnosti sustava koji osiguravaju dokaz ljudske interakcije. Iako su ti sustavi strojnog učenja razvijeni da bi zaštitile razne baze podataka i web stranice oni su sami ranjivi određenim vrstama zlonamjernih napada. |
Postoji jako puno mogućnosti primjene strojnog učenja, i općenitije umjetne inteligencije, | Postoji jako puno mogućnosti primjene strojnog učenja, i općenitije umjetne inteligencije, |