Slijede razlike između dviju inačica stranice.
Starije izmjene na obje strane Starija izmjena Novija izmjena | Starija izmjena | ||
racfor_wiki:seminari:tehnike_izrade_deep_fake_videa [2023/01/12 22:01] kl50222 [DeepFaceLab] initial |
racfor_wiki:seminari:tehnike_izrade_deep_fake_videa [2023/06/19 18:17] (trenutno) |
||
---|---|---|---|
Redak 5: | Redak 5: | ||
U ovom radu će se dati opis deepfake-a te će se objasniti tehnike i znanstvena teorija na kojoj je zasnivan. Opisati će se najpopularniji alati te kako se koriste i pružiti će se uvid u njihove prednosti i nedostatke. | U ovom radu će se dati opis deepfake-a te će se objasniti tehnike i znanstvena teorija na kojoj je zasnivan. Opisati će se najpopularniji alati te kako se koriste i pružiti će se uvid u njihove prednosti i nedostatke. | ||
- | Ključne riječi: Deepfake; | + | Ključne riječi: Deepfake; |
Redak 13: | Redak 13: | ||
Lažni videozapisi se mogu koristiti za različite svrhe, uključujući političke lažne vijesti, kompromitiranje poznatih osoba i kreiranje neistinitih informacija. Oni mogu biti štetni za javno mišljenje, a ponekad mogu imati ozbiljne posljedice za pojedince ili društvo u cjelini. | Lažni videozapisi se mogu koristiti za različite svrhe, uključujući političke lažne vijesti, kompromitiranje poznatih osoba i kreiranje neistinitih informacija. Oni mogu biti štetni za javno mišljenje, a ponekad mogu imati ozbiljne posljedice za pojedince ili društvo u cjelini. | ||
- | Rani značajan projekt bio je program Video Rewrite, objavljen 1997. godine, koji je modificirao postojeću video snimku osobe koja govori kako bi prikazala tu osobu kako izgovara riječi sadržane u drugom audio zapisu. Bio je to prvi sustav koji je u potpunosti automatizirao ovu vrstu reanimacije lica, a to je učinio pomoću tehnika strojnog učenja za uspostavljanje veza između zvukova koje proizvodi subjekt videa i oblika lica subjekta. | + | Rani značajan projekt bio je program Video Rewrite[1], objavljen 1997. godine, koji je modificirao postojeću video snimku osobe koja govori kako bi prikazala tu osobu kako izgovara riječi sadržane u drugom audio zapisu. Bio je to prvi sustav koji je u potpunosti automatizirao ovu vrstu reanimacije lica, a to je učinio pomoću tehnika strojnog učenja za uspostavljanje veza između zvukova koje proizvodi subjekt videa i oblika lica subjekta. |
Postupci lažiranja informacija i medija nisu neuobičajni, | Postupci lažiranja informacija i medija nisu neuobičajni, | ||
===== Deepfake ===== | ===== Deepfake ===== | ||
- | Deepfake tehnologija predstavlja novi način stvaranja videozapisa koji omogućuje mijenjanje lica i glasa glumaca ili drugih poznatih osoba s licima i glasovima drugih ljudi. Ova tehnologija koristi se za različite svrhe, uključujući umjetničke projekte, političke lažne vijesti, te zabavne sadržaje. | + | Deepfake |
- | Deepfake se koristi umjetnom inteligencijom i tehhnologijama dubokog učenja, posebno generativnih protivničkih mreža (GANs) koje se koriste za generiranje slika, i autoencoderi koji se koriste za pretvaranje lica i glasova iz jednog videa u druge. | + | Deepfake se koristi umjetnom inteligencijom i tehhnologijama dubokog učenja, posebno generativnih protivničkih mreža (GANs) |
Ova tehnologija je izazvala veliku pažnju u javnosti, jer je sposobna stvoriti vrlo realistične video zapise, često teško raspoznatljive od stvarnih. To je dovelo do zabrinutosti o mogućnosti zloupotrebe tehnologije za lažne vijesti i manipulaciju javnog mišljenja. Stoga je važno razvijati tehnologije za otkrivanje deepfake videa i promicati odgovornu upotrebu tehnologije. Iako deepfake tehnologija može biti korištena za neetične svrhe, također se koristi za kreativne projekte i istraživačke svrhe. | Ova tehnologija je izazvala veliku pažnju u javnosti, jer je sposobna stvoriti vrlo realistične video zapise, često teško raspoznatljive od stvarnih. To je dovelo do zabrinutosti o mogućnosti zloupotrebe tehnologije za lažne vijesti i manipulaciju javnog mišljenja. Stoga je važno razvijati tehnologije za otkrivanje deepfake videa i promicati odgovornu upotrebu tehnologije. Iako deepfake tehnologija može biti korištena za neetične svrhe, također se koristi za kreativne projekte i istraživačke svrhe. | ||
- | Anketa o deepfakeovima, | + | Anketa o deepfakeovima, |
Generalizacija. Visokokvalitetni deepfakeovi često se postižu vježbanjem na satima snimke mete. Ovaj izazov je smanjiti količinu podataka za obuku i vrijeme za obuku modela potrebnog za proizvodnju kvalitetnih slika i omogućiti izvođenje obučenih modela na novim identitetima (nevidljivim tijekom obuke). | Generalizacija. Visokokvalitetni deepfakeovi često se postižu vježbanjem na satima snimke mete. Ovaj izazov je smanjiti količinu podataka za obuku i vrijeme za obuku modela potrebnog za proizvodnju kvalitetnih slika i omogućiti izvođenje obučenih modela na novim identitetima (nevidljivim tijekom obuke). | ||
Redak 54: | Redak 54: | ||
==== Generative Adversarial Networks (GANs) ==== | ==== Generative Adversarial Networks (GANs) ==== | ||
- | Generative Adversarial Networks su klasa dubokog učenja modela koji se koriste za generiranje novih i jedinstvenih podataka, poput slika, videa i zvuka. GANs se sastoji od dva glavna dijela: generatora i diskriminatora. | + | Generative Adversarial Networks su klasa dubokog učenja modela koji se koriste za generiranje novih i jedinstvenih podataka, poput slika, videa i zvuka. GANs se sastoji od dva glavna dijela: generatora i diskriminatora |
Generator je neuronska mreža koja prima nasumični šum kao ulaz i generira nove podatke u obliku slika, videa ili zvuka. Generator se trenira da nauči podložnu distribuciju podataka koje pokušava generirati. | Generator je neuronska mreža koja prima nasumični šum kao ulaz i generira nove podatke u obliku slika, videa ili zvuka. Generator se trenira da nauči podložnu distribuciju podataka koje pokušava generirati. | ||
Redak 68: | Redak 68: | ||
==== Autoencoders ==== | ==== Autoencoders ==== | ||
- | Autoencoderi su vrsta neuronske mreže koja se koristi za nevezano učenje. Glavni cilj autoencodera je naučiti komprimirano predstavljanje ulaznih podataka, nazvano grlo ili latentna reprezentacija. | + | Autoencoderi |
Autoencoder se sastoji od dva glavna dijela: kodera i dekodera. Kodiratelj prima ulazne podatke i uči ih komprimirati u nižedimenzionalnu reprezentaciju. Dekodiratelj uzima ovu komprimiranu reprezentaciju i pokušava rekonstruirati izvorni ulazni podatak. | Autoencoder se sastoji od dva glavna dijela: kodera i dekodera. Kodiratelj prima ulazne podatke i uči ih komprimirati u nižedimenzionalnu reprezentaciju. Dekodiratelj uzima ovu komprimiranu reprezentaciju i pokušava rekonstruirati izvorni ulazni podatak. | ||
Redak 92: | Redak 92: | ||
==== DeepFaceLab ==== | ==== DeepFaceLab ==== | ||
- | DeepFaceLab je vodeći softver za izradu deepfake videozapisa. Radi se o besplatnoj i otvorenoj aplikaciji za generiranje umjetnih lica koja koristi tehnologiju dubokog učenja. Razvijena je od strane skupine hakera i entuzijasta koji se bave generativnim modelima lica. | + | DeepFaceLab[8] je vodeći softver za izradu deepfake videozapisa. Radi se o besplatnoj i otvorenoj aplikaciji za generiranje umjetnih lica koja koristi tehnologiju dubokog učenja. Razvijena je od strane skupine hakera i entuzijasta koji se bave generativnim modelima lica. |
Aplikacija se koristi za stvaranje deepfake videa, što znači da koristi duboko učenje za izmjenu lica u videozapisu. To se može postići generiranjem 3D modela lica iz slika i korištenjem tih modela za " | Aplikacija se koristi za stvaranje deepfake videa, što znači da koristi duboko učenje za izmjenu lica u videozapisu. To se može postići generiranjem 3D modela lica iz slika i korištenjem tih modela za " | ||
Redak 113: | Redak 113: | ||
==== DeepSwap ==== | ==== DeepSwap ==== | ||
- | DeepSwap je deepfake softver koji koristi tehnike dubokog učenja za generiranje realističnih zamjena lica. Poznat je po svom pristupačnom korisničkom sučelju i sposobnosti stvaranja visokokvalitetnih deepfake-ova. | + | DeepSwap[9] je deepfake softver koji koristi tehnike dubokog učenja za generiranje realističnih zamjena lica. Poznat je po svom pristupačnom korisničkom sučelju i sposobnosti stvaranja visokokvalitetnih deepfake-ova. |
Jedna od ključnih značajki DeepSwap-a je njegova sposobnost izvođenja zamjene lica u stvarnom vremenu, što olakšava korisnicima da vide rezultate svojih uređaja i da naprave prilagodbe po potrebi. DeepSwap također koristi arhitekturu neuronske mreže koja je posebno dizajnirana za rad s licima, što mu omogućuje generiranje preciznijih i realističnijih zamjena lica. | Jedna od ključnih značajki DeepSwap-a je njegova sposobnost izvođenja zamjene lica u stvarnom vremenu, što olakšava korisnicima da vide rezultate svojih uređaja i da naprave prilagodbe po potrebi. DeepSwap također koristi arhitekturu neuronske mreže koja je posebno dizajnirana za rad s licima, što mu omogućuje generiranje preciznijih i realističnijih zamjena lica. | ||
Redak 125: | Redak 125: | ||
+ | Deepfake videozapisi se brzo razvijaju i imaju potencijal promijeniti način na koji stvaramo i konzumiramo medije. Ovi su alati korisnicima olakšali stvaranje realističnih i uvjerljivih deepfake videozapisa, | ||
+ | |||
+ | Budućnost korištenja umjetne inteligencije i dubokog učenja u stvaranju medijskog sadržaja je nepredvidiva. Deepfake tehnologije predstavljaju tek početak tog aspekta te će se sa daljnjim razvojem sigurno proizvesti kvalitetnija i preciznija metodologija izrade medijskih sadržaja. Iako tehnologija za lažiranje video sadržaja postaje sve sofisticiranija, | ||
===== Literatura ===== | ===== Literatura ===== | ||
- | [1] [[https:// | + | [1] [[https:// |
- | + | ||
- | [2] [[http:// | + | |
- | + | ||
- | [3] [[https:// | + | |
- | + | ||
- | DeepFake: | + | |
- | + | ||
- | https:// | + | |
- | + | ||
- | + | ||
- | https:// | + | |
- | + | ||
- | https:// | + | |
- | + | ||
- | https:// | + | |
- | https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a | + | [2] [[https://www.foxnews.com/tech/ |
- | https://github.com/neuralchen/SimSwap | + | [3] [[https://www.sciencedirect.com/science/article/ |
- | https://analyticsindiamag.com/guide-to-simswap-an-efficient-framework-for-high-fidelity-face-swapping/ | + | [4] [[https://irep.ntu.ac.uk/id/eprint/ |
- | https://en.wikipedia.org/wiki/Generative_adversarial_network | + | [5] [[https://dl.acm.org/doi/10.1145/ |
- | https://en.wikipedia.org/wiki/Autoencoder | + | [6] [[https://theaisummer.com/gan-computer-vision/# |
- | https://towardsdatascience.com/family-fun-with-deepfakes-or-how-i-got-my-wife-onto-the-tonight-show-a4454775c011 | + | [7] [[https://www.researchgate.net/profile/ |
- | https://www.alanzucconi.com/2018/ | + | [8] [[https://github.com/iperov/DeepFaceLab| Github Repository: DeepFaceLab]] |
- | https:// | + | [9] [[https:// |