Slijede razlike između dviju inačica stranice.
| Starije izmjene na obje strane Starija izmjena Novija izmjena | Starija izmjena | ||
|
racfor_wiki:seminari2025:fb53909 [2026/01/30 19:37] Filip Borić [PingLoc] |
racfor_wiki:seminari2025:fb53909 [2026/01/30 19:38] (trenutno) Filip Borić [Dodatne metode stvaranja otiska i korištenje modela umjetne inteligencije za stvaranje otiska] |
||
|---|---|---|---|
| Redak 121: | Redak 121: | ||
| - | Model za prepoznavanje otiska internetskog preglednika (engl. Browser Fingerprint Recognition Model) razvili su 2020. godine istraživači iz Beijinga [8], s ciljem prepoznavanja manjih promjena otiska kroz vrijeme. Razvijen je kao nastavak prijašnjih metoda stvaranja otiska. Prikuplja informacije o pregledniku i stanju računala iz JavaScript koda prisutnom na posjećenoj stranici. Kombinira prošle tehnike praćenja pomoću kolačića i stvaranja otiska putem aplikacijskog sučelja Canvas, zajedno sa informacijama o IP adresi korisnika. Autori navode kako također koriste informaciju o tome je li korisnik dopustio korištenje kolačića na stranici, zajedno i s već zastarjelom opcijom DNT zaglavlja (engl. Do Not Track). Svaka prikupljena informacija nosi određenu težinu koja određuje njezin doprinos ukupnom otisku, uzimajući u obzir i sadržaj same informacije. Koriste uspoređivanje otisaka, pri čemu, ovisno o količini informacija koje su dovoljno slične, primjenjuju različite postupke za nastavak rada. U slučajevima kada provjera dviju vrijednosti otisaka ne pokazuje preklapanje, | + | Model za prepoznavanje otiska internetskog preglednika (engl. |
| {{ : | {{ : | ||
| Redak 139: | Redak 139: | ||
| Umjetna inteligencija sve je prisutnija u svakodnevnom životu, u znanstvenim istraživanjima i u specijaliziranim primjenama. Metode strojnog učenja, dubokog učenja te veliki jezični modeli doživjeli su izniman razvoj i široku primjenu, a mnogi znanstvenici istražuju i njihove moguće primjene u području stvaranja otiska internetskog preglednika. | Umjetna inteligencija sve je prisutnija u svakodnevnom životu, u znanstvenim istraživanjima i u specijaliziranim primjenama. Metode strojnog učenja, dubokog učenja te veliki jezični modeli doživjeli su izniman razvoj i široku primjenu, a mnogi znanstvenici istražuju i njihove moguće primjene u području stvaranja otiska internetskog preglednika. | ||
| - | Istraživači iz Shanghai-ja 2021. istražuju primjenu nenadziranog učenja zajedno s autoenkoderima i postepenim grupiranjem za identifikaciju otiska preglednika [10]. Autoenkoder stvara latentni prikaz (engl. embedding) iz sirovih značajki otiska za sažimanje informacije, | + | Istraživači iz Shanghai-ja 2021. istražuju primjenu nenadziranog učenja zajedno s autoenkoderima i postepenim grupiranjem za identifikaciju otiska preglednika [10]. Autoenkoder stvara latentni prikaz (engl. |
| U istraživanju iz 2024. znanstvenici iz Wuhan-a koriste konvolucijske neuronske mreže kako bi odredili pripadaju li dva različita otiska istom korisniku [12]. Otisci internetskih preglednika modeliraju se kao strukturirani vektori značajki te se pretvaraju u pogodniji oblik za obradu konvolucijskim neuronskim mrežama. Model umjetne inteligencije sposoban je naučiti koje su promjene u otisku s vremenom normalne, a koje promjene su dovoljno značajne da upućuju na novog korisnika. | U istraživanju iz 2024. znanstvenici iz Wuhan-a koriste konvolucijske neuronske mreže kako bi odredili pripadaju li dva različita otiska istom korisniku [12]. Otisci internetskih preglednika modeliraju se kao strukturirani vektori značajki te se pretvaraju u pogodniji oblik za obradu konvolucijskim neuronskim mrežama. Model umjetne inteligencije sposoban je naučiti koje su promjene u otisku s vremenom normalne, a koje promjene su dovoljno značajne da upućuju na novog korisnika. | ||
| Redak 154: | Redak 154: | ||
| ==== EssentialFP ==== | ==== EssentialFP ==== | ||
| - | Istraživači iz Beča nastoje razviti pouzdaniju metodu prepoznavanja skripti za stvaranje otiska od uobičajenih heurističkih tehnika ili filtriranja pomoću liste domena ili skripti [13]. Proces stvaranja otiska promatraju kao prikupljanje informacija iz velikog broja različitih aplikacijskih sučelja preglednika te slanje tih prikupljenih informacija kroz mrežne zahtjeve. Tijek informacija smatraju ključnim elementom za uspješno prepoznavanje skripti za stvaranje otiska, jer upravo način na koji se podaci prikupljaju i šalju može otkriti da skripta radi fingerprinting. Stvorili su poseban preglednik EssentialFP, | + | Istraživači iz Beča nastoje razviti pouzdaniju metodu prepoznavanja skripti za stvaranje otiska od uobičajenih heurističkih tehnika ili filtriranja pomoću liste domena ili skripti [13]. Proces stvaranja otiska promatraju kao prikupljanje informacija iz velikog broja različitih aplikacijskih sučelja preglednika te slanje tih prikupljenih informacija kroz mrežne zahtjeve. Tijek informacija smatraju ključnim elementom za uspješno prepoznavanje skripti za stvaranje otiska, jer upravo način na koji se podaci prikupljaju i šalju može otkriti da skripta radi fingerprinting. Stvorili su poseban preglednik EssentialFP, |
| ===== Dobra praksa ===== | ===== Dobra praksa ===== | ||