Slijede razlike između dviju inačica stranice.
| Starije izmjene na obje strane Starija izmjena | |||
|
racfor_wiki:seminari2025:mb53889 [2026/01/28 14:05] Martin Bogoje |
racfor_wiki:seminari2025:mb53889 [2026/01/28 14:07] (trenutno) Martin Bogoje |
||
|---|---|---|---|
| Redak 150: | Redak 150: | ||
| * Skalabilnost na velike količine fragmenata | * Skalabilnost na velike količine fragmenata | ||
| + | ^ Metoda / pristup ^ Temeljna ideja ^ Kako tretira fragmente ^ Vrsta značajki koje koristi ^ Prednosti u forenzici ^ Ograničenja u realnim slučajevima ^ Tipični datasetovi ^ | ||
| + | | Header/ | ||
| + | | Heuristički carving | Analiza unutarnje strukture datoteka i validacija polja (duljine, offseti, kontrole) | Pokušava rekonstruirati redoslijed fragmenata kroz validaciju strukture | Ručno dizajnirane heuristike, parseri specifični za formate | Može rekonstruirati fragmentirane datoteke ako je struktura poznata | Zahtijeva duboko znanje formata; ne skalira se; slabo radi s novim verzijama formata | govdocs1, ručno pripremljeni uzorci | | ||
| + | | SVM hijerarhija | Višerazinska klasifikacija: | ||
| + | | Byte2Vec | Učenje “semantike bajtova” kroz kontekst pojavljivanja (skip-gram) | Fragmente promatra kao sekvence gdje je važan lokalni kontekst bajtova | Naučene vektorske reprezentacije bajtova (embeddings) | Ne zahtijeva ručno definirane značajke; hvata suptilne obrasce | Ograničen kapacitet modela; ne koristi prostornu (bitnu) strukturu | FFT-75 | | ||
| + | | Byte2Image (CNN) | Pretvara niz bajtova u 2D sliku radi hvatanja bitnih obrazaca | Fragmente tretira kao prostorne entitete (slike) | Bit-shift transformacije + CNN značajke | Hvata intra-bajtne informacije; | ||
| + | | Depthwise CNN | Optimizirani CNN s rastavljenim konvolucijama | Fragmente tretira izolirano, ali vrlo učinkovito | Automatski naučene konvolucijske značajke | Vrlo brz, malen model, pogodan za velike količine podataka | Ne koristi kontekst susjednih sektora | FFT-75 | | ||
| + | | JSANet (Self-Attention) | Kombinira pažnju po bajtovima, kanalima i sektorima | Uvažava kontekst susjednih sektora | Attention mehanizmi na više razina | Znatno bolja točnost kod fragmentacije; | ||
| + | | Transformer (Swin V2) | Uči hijerarhijske obrasce kroz attention nad cijelim fragmentom | Hvata dugodosežne zavisnosti unutar fragmenta | Potpuno naučene značajke bez ručnog dizajna | Najveća točnost; dobra generalizacija na nepoznate formate | Veliki računalni zahtjevi; potreba za optimizacijom | FFT-75, prošireni skupovi | | ||
| + | | XAI integracija | Objašnjavanje odluka modela (SHAP, LIME) | Analizira koje pozicije u fragmentu utječu na odluku | Važnost značajki i bajtova | Ključno za forenzička izvješća i sudsku prihvatljivost | Ne poboljšava točnost, već interpretaciju | Primjenjivo na sve navedene datasetove | | ||
| ===== Izazovi i budući razvoj ===== | ===== Izazovi i budući razvoj ===== | ||